Abstract

Selected configuration interaction (sCI) methods exploit the sparsity of the full configuration interaction (FCI) wave function, yielding significant computational savings and wave function compression without sacrificing the accuracy. Despite recent advances in sCI methods, the selection of important determinants remains an open problem. We explore the possibility of utilizing reinforcement learning approaches to solve the sCI problem. By mapping the configuration interaction problem onto a sequential decision-making process, the agent learns on-the-fly which determinants to include and which to ignore, yielding a compressed wave function at near-FCI accuracy. This method, which we call reinforcement-learned configuration interaction, adds another weapon to the sCI arsenal and highlights how reinforcement learning approaches can potentially help solve challenging problems in electronic structure theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.