Abstract

The goal of this thesis was to find conditions to form C-C double bond and single bond using sulfonyl derivativies, which are arising from the Vogel's oxyallylation cascades. In a second chapter, it is shown that 2-methylprop-2-ene-1-sulfonyl fluorides can be easily prepared via the ene reaction of methallylsilanes and SO2 followed by halogenosis (NCS, then KF). In the presence of a base, aldehydes and 2-methylprop-2-ene-1-sulfonyl fluorides give mixture of (1Z)- and (1E)-1-aryl-3-methylbutadienes. Their (Z)→(E) isomerization by classical means fails or leads to their polymerization. We have discovered that SO2 can isomerize 1-aryl-3-methyl-1,3-dienes at low temperature, without formation of sulfolenes (cheletropic addition/elimination). Preliminary mechanistic studies suggest that SO2 add to the 1,3-dienes forming 1,4-diradical intermediates that are responsible for the (Z)→(E) isomerizations. In the third chapter, we have shown that arenesulfonyl chlorides are versatile electrophilic reagents for C-C cross-coupling reactions. Arene-, arylmethane- and alk-2-ene-1-sulfonyl chlorides undergo desulfitative Stille, carbonylative Stille, Negishi and Suzuki-Miyaura cross-coupling reactions. In these reactions the reactivity order is ArI> ArSO2Cl> ArBr> ArCl. Similarly, desulfitative Sonogashira-Hagihara cross-couplings of arenesulfonyl chlorides with aryl- and alkylacetylenes can be catalyzed by Pd2(dba)3/P(t-Bu)3/CuI. New conditions have been found for the desulfitative Mizoroki-Heck arylation and trifluoromethylation of mono- and disubustituted olefins with arenesulfonyl and trifluoromethanesulfonyl chlorides. This procedure allows one to obtain (E)-1,2-disubstituted alkenes with high stereoselectivity and 1,1,2-disubstituted alkenes with high (E)/(Z) stereoselectivity. If phosphine- and base-free conditions are required, 1 mol% {RhCl(C2H4)2} catalyses the desulfitative cross-coupling reactions. On the contrary to what has been reported for RuCl2(PPh3)2 catalyzed coupling reactions with sulfonyl chlorides, the palladium and rhodium desulfitative Mizoroki-Heck coupling reactions are not inhibited by radical scavenging agents. Moreover, sulfones that are formed from the sulfonylation of alkenes at 60°C can theoretically be envisaged as intermediates in all cross-coupling reactions. However we have shown that they are not desulfitated at higher temperatures in the presence of the Pd or Rh-catalysts. Alk-2-ene-1-sulfonamides can also undergo desulfamylating cross-coupling reaction with Grignard reagents in the presence of a nickel catalyst. In the fouth chapter, we have evaluated the possibility that silyl sulfinates can be used as nucleophilic partners to form C-C bond. Our preliminary results indicate that their hypothesis should be explored further. In a fifth chapter, we have contributed to the development of an efficient one-pot, three component syntheses of sulfonamides and sulfonic esters. We have demonstrated that the ene-reaction of sulfur dioxide with enoxysilanes can be stereoselective under conditions of kinetic control. As others in our laboratory, we have shown that the hetero-Diels-Alder addition of sulfur dioxide to 1-oxy or 1,3-dioxy-1,3-dienes generates zwitterions that add to enoxysilanes or allylsilanes giving silyl sulfinates that can be converted in the same pot into polyfunctional sulfones, sulfonamides or sulfonic esters. Intramolecular S-allylation of intermediate silyl sulfinates has allowed one to prepare new tetrahydro-2H-thiocine derivatives. Our key contribution has been to use enantiomerically enriched amines which has allowed one to obtain enantiomerically enriched polyfunctional sulfonamides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call