Abstract

In vacuum, the bare zigzag (zz) edge of graphene is reconstructed into a line of pentagon-heptagon pairs, while the pristine armchair (ac) edge is retained. Our first-principle explorations of graphene edges on three metal surfaces [Cu(111), Co(111), and Ni(111)] indicate an opposite tendency, that is, the pristine zz edge is energetically favorable and the reconstructed ac edge with dangling C atoms is highly stable on Co(111) and Ni(111) surfaces. Insightful analysis shows that passivation of the graphene edge by metal surfaces is responsible for the dramatic differences. Beyond this, the unique edge configuration has a significant impact on the graphene CVD growth behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.