Abstract
Near infrared (NIR) luminescent materials are an exciting playground for telecommunications, biosciences and solar energy conversion. In particular, transition metal (TM) ions activated materials, which exhibit unique spectroscopic features such as broadband luminescence and long lasting phosphorescence in the NIR region, have attracted increasing attention. The local chemistry environment enables TM ions activated to have compelling properties such as tunable, broadband NIR emission as well as the adjustable decay dynamics. In this review, we firstly introduce the fundamental principles, the crystal field theory, for the NIR optical response of the TM ions, discuss the key physical factors to adjust the NIR luminescence properties of the TM ions. Secondly, we present a comprehensive review of the strategies based on local chemistry engineering for design the TM ions activated materials with the desired performance. Furthermore, we also emphasize recent advances in the application of the TM ions activated materials. Finally, we comment on the future requirements for the TM ions activated materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.