Abstract

Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants has been refuted in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn₁₋xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn₁₋xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn₁₋xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies clearly showed that the difference in the ferromagnetic properties of Zn₁₋xFexO nanoparticles with different surface structures originate from differences in the fraction of the doped Fe³⁺ ions that are coupled ferromagnetically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call