Abstract

The emergence of Dilute Magnetic Semiconductors (DMS) with a potentials for spintronic application have attracted much researches attention, special consideration has been given to ZnO semiconductor material due to its wide band gap of 3.37 eV, large exciting binding energy of 60 meV, moreover, its ferromagnetic behavior at room temperature when doped with transition metals. MxZn1-xO (M = Fe or Ni) nanoparticles were synthesized by microwave assisted synthesis method calcined at 600°C. The structural, morphological and magnetic properties of these nanoparticles were studied using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Vibrating Sample Magnetometer (VSM) respectively. Single phase Wurtzite hexagonal crystal structure was observed for the undoped and Fe doped ZnO nanoparticles with no any impurity, whereas Ni doped ZnO nanoparticles shows the formation of NiO impurities. The magnetic measurement reveals a diamagnetic behavior for the undoped ZnO meanwhile a clear room temperature ferromagnetism was observed for both Fe and Ni doped ZnO. Fe doped ZnO present a high saturation magnetization compared to Ni doped ZnO. However, Ni doped ZnO present high coercivity. The research was confirmed that Fe doped ZnO material will be good material combination for spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call