Abstract

An exact examination of a one-dimensional (1D) anharmonic elastic model describing the thermodynamic properties of spin-crossover (SCO) solids is presented. This elastic model incorporates both intra-chain and mean field inter-chain interactions, providing a more understanding of 1D SCO materials. Numerical findings for a linear chain of spins unveil intriguing features, such as a two-step-like transition. Extending the model to interacting chains leads to an additional term in the effective ligand field of the system’s Hamiltonian, thereby enhancing its predictive power by accounting for more elastic constants of interactions. This augmentation reinforces the model’s validity in capturing the spin-crossover phenomenon. Numerical results in this extended framework elucidate clearer two-step-like spin crossover transitions, with the HS_LS fraction of spins approaching maximum values at equilibrium temperature Teq.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.