Abstract
Phosphine catalysis generally relies on the potential of carbanion-phosphonium zwitterions that are generated via nucleophilic addition of phosphine catalyst to electrophilic reactants. Consequently, structural modification of zwitterions using distinct electrophilic reactants has emerged as a prominent strategy to enhance catalysis diversity. Herein, we present an alternative strategy that utilizes AgF additive to expand phosphine catalysis. We find that AgF can readily transform the canonical carbanion–phosphonium zwitterion into silver enolate–fluorophosphorane intermediate, eventually furnishing a P(III)/P(V) catalytic cycle. This strategy has been successfully applied to the phosphine-catalyzed reaction of 2-substituted allenoate and imine, resulting in the transition from Kwon [4 + 2] cycloaddition to [3 + 2] cycloaddition. This [3 + 2] cycloaddition features remarkable diastereoselectivity, high yield, and broad substrate scope. Experimental and computational studies have validated the proposed mechanism. Given the prevalence of carbanion–phosphonium zwitterions in phosphine catalysis, this AgF-assisted strategy is believed to hold significant potential for advancing P(III)/P(V) catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.