Abstract
We report a transition from homogeneous deformation to localized densification for nanoporous gold (NPG) under compression, with its solid fraction (φ) increasing to above ∼1/3. Results obtained herein suggest that this transition is inverted compared to that of conventional porous materials. Consequently, under compression, the low-density NPGs with φ<1/3 showed evident strain hardening, whereas a stress plateau was observed for high-density NPGs with φ>1/3, which is contrary to the established notions for conventional porous materials. The ligament pinch-offs and bending-dominated structures are responsible for the homogeneous deformation of low-density NPGs. For high-density NPGs, the compression- or tension-dominated structure enables the collective strain bursts in nanoligaments, resulting in localized densification and stress plateau in their compression curves. In addition to the nanosize effect, the surface-diffusion-mediated topology evolution and the large-scale crystal-lattice coherency arising from the large grain size are also decisive to the mechanical response of dealloyed NPGs, which might be universal for self-organized nanonetwork materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.