Abstract

Density-strength tradeoff appears to be an inherent limitation for most materials and therefore design of cell topology that mitigates strength decrease with density reduction has been a long-lasting engineering pursue for porous materials. Continuum-mechanics-based analyses of mechanical responses of conventional porous materials with bending-dominated structures often give the density-strength scaling law following the power-law relationship with an exponent of 1.5 or higher, which consequentially determines the upper bound of the specific strength for a material to reach. In this work, a new design criterion capable of significantly abating strength degradation in lightweight materials is presented, by successfully combining the size-induced strengthening effect in nanomaterials with the architectural design of cellular porous materials. Hollow-tube-based 3D ceramic nanoarchitectures satisfying such criterion are fabricated in large area using proximity field nano-patterning and atomic layer deposition. Experimental data from micropillar compression confirm that the strengths of these nanoarchitectural materials scale with relative densities with a power-law exponent of 0.93, a hardly observable value in conventional bending-dominated porous materials. This discovery of a new density-strength scaling law in nanoarchitectured materials will contribute to creating new lightweight structural materials attaining unprecedented specific strengths overcoming the conventional limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.