Abstract
Nanoporous structures including single nanopores and nanoporous membranes have been utilized as a platform to study fundamental liquid-vapor phase change heat transfer (PCHT) processes as well as a promising candidate for high flux heat dissipation. Both thin film boiling and evaporation through nanoporous structures have been demonstrated to achieve high heat flux, but they are usually considered two mutually exclusive regimes operated under vastly different conditions, and the factors dictating how close the PCHT process is to the kinetic limit are elusive. In this work, we utilized a unique transition between thin film boiling and evaporation through nanoporous membranes to clarify the factors determining the heat flux and heat transfer coefficient (HTC) with respect to the kinetic limit conditions. We unambiguously showed the controllable transition from boiling to evaporation, when the liquid receded into the nanopores and provided additional driving force from capillary pumping sustained in the nanoscale pores. We showed that this transition is universal and can be understood from a simple fluid transport model for all the four types of fluids we studied, which cover a wide span of surface tension (water, ethanol, isopropanol (IPA), FC-72). More importantly, PCHT conditions at the transition points between boiling and evaporation were close to those of the kinetic limit of all these fluids. However, further increase of the heat flux beyond the transition points led to decreasing HTC and deviation from the kinetic limit, which can be attributed to the increasing vapor resistance in the vapor space and inside the nanopores. This increasing vapor resistance was also confirmed by experiments on IPA with different vapor pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.