Abstract

The constant increase in data center computational and processing requirements has led to increases in the IT equipment power demand and cooling challenges of high-density (HD) data centers. As a solution to this, the hybrid and liquid systems are widely used as part of HD data centers thermal management solutions. This study presents an experimental based investigation and analysis of the transient thermal performance of a stand-alone server cabinet. The total heat load of the cabinet is controllable remotely and a rear door heat exchanger is attached with controllable water flow rate. The cooling performances of two different failure scenarios are investigated. One is in the water chiller and another is in the water pump for the Rear Door Heat eXchanger (RDHX). In addition, the study reports the impact of each scenario on the IT equipment thermal response and on the cabinet outlet temperature using a mobile temperature and velocity mesh (MTVM) experimental tool. Furthermore, this study also addresses and characterizes the heat exchanger cooling performance during both scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.