Abstract

This paper presents a computational modeling approach to characterize the internal temperature distribution within a Li-Ion battery pack. In the mathematical formulation both entropy-based and irreversible-based heat generation have been considered; combined with CFD software in order to simulate the temperature distribution and evolution in a battery pack.A prismatic Li-ion phosphate battery is tested under constant current discharge/charge rates of 1C, 2C, 5C and 8C. Model parameters (in particular, the entropic heat coefficient and the internal resistance) needed for the calibration of the model are determined using experimentation.The model is then used to simulate two different strategies for the thermal control of a battery pack in case of car application: an air-cooling and a liquid-cooling strategy.The simulation has highlighted the pros and cons of the two strategies, allowing a good understanding of the needs during the process of battery pack design and production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.