Abstract
Safety demonstration tests on the 10 MW high temperature gas-cooled reactor test module (HTR-10) were conducted to verify the inherent safety features of MHTGRs and to obtain the core and primary cooling system transient data for validation of safety analysis codes. Two simulated anticipated transients without scram (ATWS) tests, lose of forced cooling by trip of the helium blower and reactivity insertion via control rod withdrawal were performed. This paper describes the tests with detailed test method, condition and results. Calculated results show that the strongly negative temperature coefficient causes reactor power to closely follow heat removal levels. Maximum fuel temperature changes are limited by the large core heat capacity to below 1230 °C during two tests. The test of tripping the helium circulator ATWS test was conducted on October 15, 2003. Although none of 10 control rods was moved, the reactor power immediately decreased due to the negative temperature coefficient. After about 50 min, the reactor became criticality again. Finally, the reactor power went to a stable level with about 200 kW. The test of reactivity insertion ATWS test was conducted two times. Following the control rod withdrawal, the reactor power increased rapidly, the maximum power level reached to 5037 and 7230 kW from the initial power of 3000 kW in accordance with reactivity insertion of $ 0.136 and 0.689, respectively. After the reactivity introduced was compensated by means of the strong negative reactivity feedback effect, the reactor went to subcritical and the power decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.