Abstract
In the context of light water reactor severe accidents analysis, this paper is focused on one key parameter of in-vessel corium phenomenology: the immiscible phases stratification and its impact on the heat flux distribution at the corium pool lateral boundary with the so-called focusing effect related to a “thin” top metal phase and the potential vessel failure at that point. More particularly, based on the limited knowledge of the stratification transient phenomenon derived from the MASCA-RCW experiment, a basic model is proposed that can be used for corium in lower head sensitivity analyses. It has been implemented in the PROCOR platform developed at CEA Cadarache. A short parametric study on a simple hypothetical transient is presented in order to highlight the different focusing effect “modes” that can be encountered based on this in-vessel corium pool model. An early mode may occur during the formation of the top metal layer while two other modes may appear later during the thinning of this top metal layer because of thermochemically induced mass transfers. Some associated relevant parameters (model or scenario-dependent) and modelling issues are mentioned and illustrated with some results of a Monte-Carlo based sensitivity calculation on the transient behaviour of the corium in the lower head of a 1650MWe GenIII PWR. Within the limiting modelling hypotheses, the thermal modelling of the steel layer for small (centimetre) heights and the mass diffusivity (limited in this case to the uranium diffusivity in the oxidic layer) are main sensitive parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.