Abstract

This paper combines the most important results on studies performed by the authors during the last decade on photoinduced electron transfer reactions of pheophytin-, phthalocyanine-, and porphyrin-fullerene dyads, in which donor and acceptor moieties are covalently linked to each other. Practically all studied molecules form an intramolecular exciplex as a transient state before the formation of the charge separation state or tight ion pair. When the center-to-center distance of the donor and acceptor pair is short (7–10 Å) both the exciplex formation and primary electron transfer are extremely fast with rate constants of 7–23 × 1012 s -1 and 40–1400 × 109 s -1, respectively. Rates become slower when the distance and orientational fluctuation increases. No systematic correlation between free energies and the rates of the formation and recombination of the exciplex and the charge separation state, respectively, were observed. The mechanism is discussed in frames of the Marcus electron transfer and the radiationless quantum transition theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.