Abstract

Abstract We present a least-squares finite-element method that can provide implicit, fully coupled transient solutions for time-dependent incompressible fluid flows and thermal convection. The algorithm consists of the Crank-Nicolson scheme for time discretization, Newton's method for linearization, and a matrix-free Jacobi conjugate gradient method as an iterative solver for the symmetric, positive-definite linear system of equations. The combined algorithm is first validated by two-dimensional flows: flows in a square cavity with a periodically oscillating lid and mixed convection in a driven cavity. Then the algorithm is used to obtain transient solutions of a three-dimensional lid-driven cavity flow for Re = 400

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.