Abstract

The operation of planar CMOS single-photon avalanche diodes (SPADs) is studied with the use of transient technology-computer-aided-design simulations calibrated with measured results. The SPAD's transient <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> - <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> curve is reported and is found to have negative differential resistance behavior that is unlike steady state. The quenching process is discussed with reference to power supply decoupling. It is found that minority carriers involved in SPAD breakdown play an important role in device performance and provide insight into a trapless after-pulsing mechanism. The influence of the parasitic bipolar transistor present in planar SPADs is analyzed. The bipolar is found to be responsible for a SPAD latch-up failure mechanism and potentially additional after pulsing. Design methods and bias possibilities for mitigating the influence of the parasitic bipolar are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.