Abstract
AbstractStudying bedrock rivers during their transient states helps understand the response of a fluvial system to the changing boundary conditions. Although theoretical studies predict how river form adjusts to changes in incision or rock uplift rates, field constraints on the timescale of this adjustment are limited. We investigated the transient behavior of channels and hillslopes and estimated the adjustment times of channel width and angle of valley‐side slopes to accelerated incision based on knickpoint travel time. We documented channel slopes, channel widths, and hillslope angles along six rivers around an active normal fault in Iwaki, Japan, and identified river sections in a transient state. Channel slopes and basin‐averaged erosion rates determined from 10Be concentrations are distinct between rivers near and distant from the fault, suggesting that past increases in fault throw rates triggered the knickpoint formation and the observed transient response. Adjustment time for width is at least 105 years and can take 106 years after the knickpoint passage. Adjustment time for hillslope angles is generally shorter than for channel width. However, the hillslope adjustment may take longer than previously reported if the effect of width adjustment on hillslope angles is significant or the complete adjustment of hillslope angles is considered. The fact that channel slope, channel width, and hillslope angle have distinct adjustment times underlines the importance of correctly identifying river sections that are fully adjusted to the new boundary conditions when inferring erosion or relative uplift rates for bedrock rivers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have