Abstract
Temporal growth of an optical Kerr frequency comb generated in a microresonator is studied both experimentally and numerically. We find that the comb emerges from vacuum fluctuations of the electromagnetic field on timescales significantly exceeding the ringdown time of the resonator modes. The frequency harmonics of the comb spread starting from the optically pumped mode if the microresonator is characterized with anomalous group velocity dispersion. The harmonics have different growth rates resulting from sequential four-wave mixing process that explains intrinsic modelocking of the comb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.