Abstract

Anomalous group velocity dispersion is a key parameter for generating bright solitons, and thus wideband Kerr frequency combs. Extension of the frequency combs spectrum to visible wavelengths has been a major challenge because of the strong normal dispersion of conventional photonic materials at these wavelengths. In this paper, we numerically demonstrate a wideband frequency comb extending from near-infrared to visible wavelengths (∼1200 nm to 650 nm). The proposed frequency comb micro-resonator takes advantage of a wideband blue-shifted anomalous dispersion, achieved in an optimized over-etched silicon nitride waveguide and strong power transfer to shorter wavelengths through radiative dispersive waves, achieved by modulating the dispersion in a coupled resonator architecture. We show the possibility of obtaining a close to visible dispersive Cherenkov radiation peak that is only 10 dB below the overall comb peak and can be tuned by adjusting the coupling structure in the coupled resonator architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.