Abstract

The photovoltaic properties of bacteriorhodopsin molecules and their photochemical intermediates have been investigated in an experimental cell consisting of multilayered films of highly oriented, dry fragments of purple membrane and lipid sandwiched between two metal (Pd) electrodes. The electrical time constant of these sandwich cells containing between 5 and 30 layers is <10 −6 s. Bright illumination of these cells with actinic flashes of ≈1 ms duration generates transient photovoltages. These photovoltages, which make the extracellular surface of purple membrane positive with respect to the intracellular surface, follow the time course of the flash with no detectable latency. The amplitude of the photovoltages increases linearly with light intensity and their action spectrum matches the absorption spectrum of the light-adapted state of bacteriorhodopsin, BR 570. In these dry multilayer cells, the slow photointermediates of bacteriorhodopsin, M 412, N 520 and O 640 are long lived. Illumination of the sandwich cells with long duration (200 ms) pulses of light results, therefore, in the formation of photomixtures containing all these slow photointermediates. Flash illumination of the sandwich cells immediately following the conditioning pulse produces photovoltages whose action spectra match the absorption spectra of the M 412 and N 520 photointermediates. The M 412 photovoltages, like the BR 570 photovoltages, follow the time course of the actinic flash with no detectable latency and increase in amplitude linearly with light intensity. But, unlike the BR 570 photovoltage, the M 412, N 520 and O 640 photovoltages make the extracellular surface of purple membrane negative with respect to the intracellular surface. Through the use of their specific photovoltaic signals, M 412 and N 520 are shown to be kinetically distinct photointermediates of bacteriorhodopsin. Detection of fast photovoltages with these characteristics in the absence of any ionic solution, and in parallel with spectrophotometric changes, suggest that they arise from charge displacements in the bacteriorhodopsin molecules and their photointermediates as they undergo photochemical conversion in response to the absorption of photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.