Abstract

Here we report the first observation of hyper-Rayleigh light scattering from bacteriorhodopsin in the form of an aqueous suspension of unoriented purple membranes. A typical purple membrane suspension used in our experiments contains approximately 10(8) randomly oriented purple membranes. Each purple membrane contains approximately 10(5) bacteriorhodopsin molecules in a two-dimensional crystallinearray. Hyper-Rayleigh light scattering is observed when the purple membrane suspension is illuminated with light that has a wavelength of 1064 nm. We propose that the 532-nm scattered light from each of the bacteriorhodopsin molecules in a single purple membrane is coherent, and that the scattered light from different purple membranes is incoherent. This proposal is supported by the following experimental observations: (a) the 532-nm light intensity is proportional to the square of the incident power, (b) the intensity of the 532-nm signal is linearly proportional to the concentration of purple membrane in solution, (c) the scattered 532-nm light is incoherent, (d) the scattered 532-nm light intensity decreases if the size of the purple membranes is reduced while the bacteriorhodopsin concentration is kept constant, and (e) the 532-nm light is due to the retinal chromophore of the bacteriorhodopsin molecule. The ratio of horizontal polarized hyper-Rayleigh scattered light to vertically polarized hyper-Rayleigh scattered light gives the angle (23 ± 4°) of the retinal axis with respect to the plane of the purple membrane. The hyperpolarizability of the bacteriorhodopsin molecule is found to be 5 ± 0.4 × 10(-27) esu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call