Abstract
Dynamics of spin injection has been studied in double quantum wells (DQWs) composed of diluted magnetic and non-magnetic semiconductors. Picosecond-transient photoluminescence (PL) of excitons in the DQWs has been measured in magnetic field. In the Cd 1− x Mn x Te-based DQWs, the PL intensity of the magnetic well (MW) excitons decays faster with decreasing barrier width from 12 to 2 nm. This provides the evidence for carrier tunneling from the MW to the non-magnetic well (NW) through the barrier layer. The degree of circular polarization in the transient PL of the NW exciton in magnetic field shows marked evidence for spin injection and rapid spin relaxation in the DQW system. In the Zn 1− y Mn y Se-based DQWs, the degree of circle polarization in the NW exciton PL at 3 T shows a rise with a time constant of 400 ps, while the PL of the MW exciton decays within 50 ps. The observed result is interpreted by the individual spin injection for electrons and holes from the MW to the NW. The results of the transient PL of excitons in the DQWs are compared with the transient absorptions of excitons studied by the pump-and-probe spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.