Abstract
Chaotic time series can exhibit rare bursts of “periodic” motion. We discuss one mechanism for this phenomenon of “transient periodicity”: the trajectory gets temporarily stuck in the neighborhood of a semiperiodic “semi-attractor” (or “chaotic saddle”). This can provide insight for interpreting such phenomena in empirical time series; it also allows for a novel partition of the phase space, in which the attractor may be viewed as the union of many such chaotic saddles.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have