Abstract
The ultrafast optical modulation properties of split ring resonators are characterized by utilizing optical pump-terahertz probe spectroscopy. The experimental results show that when the terahertz electric vector is perpendicular to the gap of the split ring resonator, resonant absorption can be quenched significantly under high pump excitation. However, when the terahertz electric vector is parallel to the gap, the resonant absorption is less sensitive to pump excitation due to the structural properties of the metamaterial. Our numerical simulations also demonstrate that the pump pulse significantly influences the split ring resonator current by generating carriers in the substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.