Abstract

AbstractThe oil well drilling process is a nonlinear system with transient nature. Conventional drilling is unable to assure safe and cost‐effective operation for fractured, cavernous, and highly permeable carbonate reservoirs, which contain the largest oil reserves worldwide. Concerning drilling technologies, Pressurized Mud Cap Drilling (PMCD) is suitable for the challenging scenario previously mentioned. According to PMCD technique, a sacrificial fluid is injected through the drill string and a light annular mud is pumped in countercurrent through the annulus region (bullheading), without surface return, forcing gas and drilled cuttings back to formation. A two‐phase flow distributed model (Drift Flux Model – DFM) is developed to properly describe the complex nature of the system. Also, an experimental facility, presenting field similarity, is employed to validate the open – closed loop schemes. The main objective of the controller (control reconfiguration with gain scheduling) is to regulate annulus pressure, handling gas kick, drilling fluid losses and inverse response dynamics. Besides, gas injection, migration and bullheading are studied. The simulations, validated through experimental data, highlight the methodology usefulness for field applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.