Abstract
This investigation presented a transient numerical study on cooling performance of cold plate based water cooling system for battery module with large lithium-ion pouch cells. The study was conducted at heat generation rates of large pouch cells with 0.07 W/cm3, 0.05 W/cm3 and 0.03 W/cm3. The operating temperature of cooling water were considered as 15 °C, 25 °C and 35 °C. The operating mass flow rates of water were considered as 0.05 kg/s, 0.10 kg/s and 0.15 kg/s. k-ε turbulence model in ANSYS CFX was used to simulate the flow in the water channel. The average battery temperature, maximum battery temperature and temperature difference between maximum and minimum were considered as critical parameters for analysing the cooling performance of battery thermal management system (BTMS) with large sized lithium-ion pouch cells. The study reported that for 0.03 W/cm3, the present cooling model was sufficient and for battery modules with higher heat generation rates need optimized strategy to provide efficient cooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.