Abstract

The lubrication and dynamic behavior of the orbiting scroll (OS) is crucial to understanding and controlling the leakage between working chambers and the contact between scrolls in the compressor. In this study, a novel comprehensive model consisting of the OS, bearings, rotor, and frames is developed and validated by experiments. This paper demonstrates, for the first time through the tribo-dynamics analysis method, that the rotor dynamics have a significant impact on the flank gap size between scrolls via the interaction of the sliding bearings. The reduction of actual orbiting radii of OS is found to be caused by the bending and tilting of the rotor. However, though increased rotational speeds can narrow the flank gaps, the impact between scrolls should be addressed in these cases. The tribo-dynamic analysis illuminates the direction of the optimal design of compression components in the scroll compressor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.