Abstract

This paper presents the development of a comprehensive simulation model of a horizontal scroll compressor, which combines a detailed compression process model (Chen Y., Halm N., Groll E., Braun J. Mathematical modelling of scroll compressors — part I: compression process modeling, International Journal of Refrigeration 2002;25(6):731–750) and an overall compressor model. In the overall model, compressor components are analyzed in terms of nine different elements. Steady state energy balance equations are established applying the lumped capacitance method. In combination with the detailed compression process model, these equations were implemented into computer code and solved recursively. In this way, the temperature and pressure of the refrigerant in different compressor chambers, the temperature distributions in the scroll wraps, and the temperatures of the other compressor elements can be obtained. Thereafter, power consumption and efficiency of the compressor can be calculated. Tests were used to verify the overall model on a macroscopic basis. Using the simulation program based on the overall compressor model, a parametric study of the scroll compressor was performed, and the effects of internal leakage and heat transfer losses were investigated and some preliminary results were obtained. These results indicate that the comprehensive scroll compressor model is capable of predicting real compressor behavior and useful to the design and optimization of scroll compressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call