Abstract

AbstractThe molecular movement in single particle tracking (SPT) experiments shows a crucial role of diffusion in many biological processes such as signaling, cellular organization, transport mechanisms, and more. The SPT analysis detects not only classical Brownian motion but diffusion with other features. These include directed diffusion and confined motion. The behavior remains a challenging problem for several reasons. Due to the action of many physical processes, random trajectories of cellular molecules are segmented in different diffusive modes. Often their study requires sophisticated algorithms for the analysis of statistical properties. In this paper we consider the segment analysis for trajectories of G proteins and coupled-receptors in living cells. Their movement is often transient and switches among free diffusion, confined diffusion, directed diffusion, and immobility. Moreover, the confined segments can have both Gaussian and non-Gaussian statistics. The types of alternation of diffusive modes along the trajectories of G proteins and coupled-receptors are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.