Abstract

AbstractSquare and triangular shape actuator panels mounted on the wall of a wind tunnel beneath an air flow have been impulsively rotated with an angular velocity between 3 and $26~\mathrm{rad} ~{\mathrm{s} }^{- 1} $. A custom-designed balance was used to measure the time-dependent lift and drag forces during the deployment of the actuator, the position of which was monitored by a digital encoder. The measured forces have been compensated for inertia effects which are significant. The results indicated that all lift and drag force coefficients during the transient deployment are different than the corresponding coefficients under stationary conditions at the same deployment angle. It was found that these dynamic effects are augmented with increasing velocity ratio $\mathit{Str}$. The square actuator was found to have better aerodynamic performance than the triangular ones. Additional experiments within different boundary layers reveal that the generated unsteady forces on the moving panels are affected by the characteristics of the incoming boundary layers. The results showed that the thinner the boundary layer is the higher the forces are. Time-resolved flow visualization studies indicated that during the deployment of the panel the upstream turbulent boundary layer structures and the free stream fluid are decelerated and squeezed in the longitudinal direction as they approach the moving plate. A very thin and highly sheared wall layer develops over the moving panel, it generates a substantial amount of vorticity and it subsequently separates from the three edges of the panel to form a large-scale ring-like vortical structure which is responsible for the transient augmentation of the aerodynamic forces. This structure consists of wrapped around separated shear layers which contain pockets of compressed eddies and free stream fluid originated in the upstream incoming boundary layer and free stream. A horseshoe vortex starts to form over the moving plate and during the final stages of deployment it has been moved upstream while the incoming boundary layer turbulent structures are pushed and diverted upwards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.