Abstract
The stability and behavior of jet flows are critical in various engineering applications, yet many aspects remain insufficiently understood. Previous studies predominantly relied on modal methods to describe small perturbations on jet flow surfaces through the linear superposition of modal waves. However, these approaches largely neglected the interaction between different modes, which can lead to transient energy growth and significantly impact jet stability. This work addresses this gap by focusing on the transient growth of disturbances in jet flows through a comprehensive non-modal analysis, which captures the short-term energy evolution. Unlike modal analysis, which provides insights into the overall trend of energy changes over longer periods, non-modal analysis reveals the instantaneous dynamics of the disturbance energy. This approach enables the identification of transient growth mechanisms that are otherwise undetectable using modal methods, which treat disturbance waves as independent and fail to account for their coupling effects. The results demonstrate that non-modal analysis effectively quantifies the interplay between disturbance waves, capturing the nonlinearity inherent in transient energy growth. This method highlights the short-term amplification of disturbances, providing a more accurate understanding of jet flow stability. Furthermore, the impact of dimensionless parameters such as the Reynolds number, Weber number, and initial wave number on transient energy growth is systematically analyzed. Key findings reveal the optimal conditions for maximizing energy growth and elucidate the mechanisms driving these phenomena. By integrating non-modal analysis, this study advances the theoretical framework of transient energy growth, offering new insights into jet flow stability and paving the way for practical improvements in fluid dynamic systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have