Abstract
The paper presents a transient analysis technique for point contact elastohydrodynamic (EHL) lubrication problems using coupled elastic and hydrodynamic equations. Full coupling is made possible by use of a novel differential deflection formulation. The way in which the differential deflection is incorporated into the overall solution method for a point contact is discussed. A range of spatial and temporal discretization methods are incorporated and compared. The method is validated under transient conditions by a detailed comparison with published work produced using a different, independent method incorporating a moving roughness feature. A comparison of the results with different discretization methods leads to the conclusion that spatial central differencing with a Crank-Nicolson temporal discretization is the most effective finite difference scheme, and this is generally equivalent to the finite element discretization given in detail in the paper. A comparison of the results produced for moving rough surfaces suggests that the finite element formulation is preferred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.