Abstract

This paper presents the transient analysis of a human artificial knee joint under elastohydrodynamic lubrication (EHL) for point contact with non-Newtonian lubricants. The artificial knee joints use ultra high molecular weight polyethylene (UHMWPE) against metal with time-varying speed and load during walking. This numerical simulation employed a perturbation method, Newton Raphson method and multigrid method with full approximation technique to solve simultaneously both the time-dependent Reynolds equation, with non-Newtonian fluid based on a Carreau model, and the elasticity equation. The general numerical schemes are implemented to investigate the characteristics of elastohydrodynamic lubrication in human artificial knee joints; profiles of pressure and film thickness are determined, with varying material and lubricant properties, applied loads and speeds. The results show that the elastohydrodynamic fluid film thickness between the metallic component of the artificial knee joint and the soft polyethylene bearing becomes larger as the contact area increases and the fluid film pressure decreases. At the beginning of the first walking cycle, the film thickness is lower than in subsequent cycles because of the time required to develop the fluid film; after the first cycle, the fluid film is similar for every cycle and is dependent on transient applied load and speed during human movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call