Abstract

Surface impedances have primarily been utilized in eddy current problems, where the skin depth is small compared to the conductor thickness being modeled. Their use is extended to arbitrary-thickness conductors. In addition, the authors investigated modeling different shapes as combinations of slabs. In particular, a cylinder was emulated as a polygon of slabs to verify the versatility of the technique. The application to sinusoidal steady-state problems is straightforward. Of greater interest is the extension to the transient problem. A solution was sought via the fast Fourier transform. With the surface impedance method, the calculation of each frequency solution is fast; the overhead required in setting up the problem, albeit the integral or finite-element matrix is geometry-dependent only, and need be performed but once. The calculation of the transient response of a cylinder placed in an exponentially decaying field is computed and compared to analytic results. Some discussion is given on the benefits of breaking up the excitation field into parts that start and end at the same level.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call