Abstract

Powder spattering is a major cause of defect formation and quality uncertainty in the laser powder bed fusion (LPBF) additive manufacturing (AM) process. It is very difficult to investigate this with either conventional characterization tools or modeling and simulation. The detailed dynamics of powder spattering in the LPBF process is still not fully understood. Here, we report insights into the transient dynamics of powder spattering in the LPBF process that was observed with in-situ high-speed high-energy x-ray imaging. Powder motion dynamics, as a function of time, environment pressure, and location, is presented. The moving speed, acceleration, and driving force of powder motion that are induced by metal vapor jet/plume and argon gas flow are quantified. A schematic map showing the dynamics and mechanisms of powder motion during the LPBF process as functions of time and pressure is constructed. Potential ways to mitigate powder spattering during the LPBF process are discussed and proposed, based on the revealed powder motion dynamics and mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call