Abstract
Powder spattering is a major cause of defect formation and quality uncertainty in the laser powder bed fusion (LPBF) additive manufacturing (AM) process. It is very difficult to investigate this with either conventional characterization tools or modeling and simulation. The detailed dynamics of powder spattering in the LPBF process is still not fully understood. Here, we report insights into the transient dynamics of powder spattering in the LPBF process that was observed with in-situ high-speed high-energy x-ray imaging. Powder motion dynamics, as a function of time, environment pressure, and location, is presented. The moving speed, acceleration, and driving force of powder motion that are induced by metal vapor jet/plume and argon gas flow are quantified. A schematic map showing the dynamics and mechanisms of powder motion during the LPBF process as functions of time and pressure is constructed. Potential ways to mitigate powder spattering during the LPBF process are discussed and proposed, based on the revealed powder motion dynamics and mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.