Abstract

This paper aims to develop and validate the transient dynamic finite element three-dimensional simulation of a waterjet peening process to predict surface properties (residual stresses, plastic strains, surface roughness, and superficial damage). The finite-element model considers an impingement of multisets of droplets, which strike the treated surface by impact pressures over the corresponding contact regions at high velocities. The impact pressures and their durations are modelled by using the liquid impact theory combined with an impact velocity law depending on the main parameters of the process. The behavior law of the material is an elastoviscoplastic law coupled to the Johnson–Cook damage criterion. The effectiveness of this simulation is discussed in two cases: (i) a linear mono-set of droplets and (ii) multisets of droplets using the experimental results of a waterjet-peened Al7075-T6 aluminum alloy. The predictive results of surface properties obtained by simulation with multi-sets of droplets appear more realistic than those obtained by simulation with a single set of droplets and more close to the experimental surface properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.