Abstract

It is now accepted that an effective way to investigate the elastic properties of soft tissues is to generate a localized transient acoustic radiation force and to follow the associated displacements in the time/space domain. Shear waves induced by this stress field are particularly interesting in this kind of medium because they are governed by the shear elastic modulus μ, which is directly linked to the Young modulus, and spatial distribution and temporal evolution of the transient motion induced must therefore be obtained in detail. We report here a model based on the elastodynamic Green’s function formalism to describe these displacements. 3D simulation of radiation force in homogenous elastic media was performed and the displacement curves computed at different radial distances for different temporal force profiles. Amplitude and duration of displacement were found to be reliable parameters to characterize the elastic properties of the medium. Experimental measurements were performed in a homogeneous agar-gelatin tissue-mimicking phantom, and two transducers were used to generate the radiation force and follow the induced displacements. Displacements obtained from different lateral locations around the applied force axis were then used to reconstruct the shear-wave propagation in a scan plane as a function of time. The experimental displacements/curves agreed with the theoretical profiles obtained by the elastodynamic Green’s function formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.