Abstract

Animals frequently experience temperature fluctuations in their natural life cycle, including periods of low temperatures below their activity range. For example, poikilothermic animals are known to enter a hibernation-like state called brumation during transient cooling. However, the knowledge regarding the physiological responses of brumation is limited. Specifically, the impact of exposure to low-temperature conditions outside the range of temperature compensation on the subsequent circadian behavioral rhythms remains unclear. In this study, we investigated the effects of transient cooling on the behavioral circadian rhythm in the non-avian reptile, the bearded dragon (Pogona vitticeps). Under constant light (LL) conditions at 30 °C, the animals exhibited a free-running rhythm, and exposure to low temperatures (4 °C) caused a complete cessation of locomotion. Furthermore, we revealed that the behavioral rhythm after rewarming is determined not by the circadian phase at the onset or the duration of cooling, but by the timing of cooling cessation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.