Abstract

The precision and reliability of synaptic information transfer depend on the molecular organization of voltage-gated calcium channels (VGCCs) within the presynaptic membrane. Alternative splicing of exon 47 affects the C-terminal structure of VGCCs and their affinity to intracellular partners and synaptic vesicles (SVs). We show that hippocampal synapses expressing VGCCs either with exon 47 (CaV2.1+47) or without (CaV2.1Δ47) differ in release probability and short-term plasticity. Tracking single channels revealed transient visits (∼100ms) of presynaptic VGCCs in nanodomains (∼80nm) that were controlled by neuronal network activity. Surprisingly, despite harboring prominent binding sites to scaffold proteins, CaV2.1+47 persistently displayed higher mobility within nanodomains. Synaptic accumulation of CaV2.1 was accomplished by optogenetic clustering, but only CaV2.1+47 increased transmitter release and enhanced synaptic short-term depression. We propose that exon 47-related alternative splicing of CaV2.1 channels controls synapse-specific release properties at the level of channel mobility-dependent coupling between VGCCs and SVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.