Abstract

We consider a system of spins which have values ±1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flipGlauber process, the other aKawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor e−2, then, in the limit e → 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. We choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. We assume further that for each e the system is in a finite interval ofZ with e−1 sites and periodic boundary conditions. We specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. We prove that at times of the order e−1/2 propagation of chaos does not hold any more and, in the limit as e → 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale e−1/2) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.