Abstract
Abstract A typical three-fluid cross-flow heat exchanger with nonuniform inlet temperature in the central (hot) fluid is considered for the present analysis. Steady and transient state behavior of the heat exchanger is observed for four different temperature nonuniformity models along with step excitation in inlet temperature of the central fluid. Longitudinal heat conduction in the separating walls and the effect of fluid back-mixing along with axial dispersion effect are considered within the fluids with constant thermophysical fluid properties. The solution of governing equations has been obtained using implicit finite difference scheme. Temperature distribution over the separating walls has been depicted providing a clear view of the thermal stresses generated in separating walls. The performance for all the four cross-flow arrangements has been analyzed by comparing that with and without nonuniform conditions. It is found that the nonuniformity in inlet temperature has an adverse effect on the performance of heat exchanger.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.