Abstract
Abstract This paper is concerned with the numerical solution by the finite element method of transient and time-harmonic three-dimensional acoustic scattering problems in infinite and semi-infinite domains. Its main objective is to illustrate how a local second-order surface-only infinite element — either transient or time-harmonic — developed recently for the three-dimensional wave equation in a full-space can be applied readily to scattering problems with penetrable objects near a planar free surface. Taking a problem in structural acoustics as a prototype, the combined infinite element-finite element method is used here to determine the total and scattered pressure patterns generated when a traveling plane wave impinges upon a structure of general geometry submerged in an acoustic fluid in half-space. One key feature of this methodology is that the ordinary differential equations that result from the spatial discretization maintain the symmetry and sparsity associated with problems defined only over interior domains; the resulting equations can then be solved by standard step-by-step time integration techniques. Thus, the combination of low bandwidth matrices with the ease of use of the infinite elements places the method in an ideal position to meet the large computational demands typically associated with large-scale underwater acoustics problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have