Abstract

ABSTRACT In this paper, the transient and steady state of a single server batch service queueing system with second optional service is analyzed. All incoming units receive essential service, once the essential service is completed, the units may opt the optional service. The study applies the probability generating function, Rouche’s theorem, and Laplace transform techniques to obtain the transient state probabilities. The stationary probabilities are obtained by using the Tauberian property in the Laplace transform expressions. This study contributes to filling the gap on investigation the batch queue with essential and optional services with interesting practical application in health care systems. Furthermore, we have presented numerical results and cost optimization. The results reveal that a higher service rate in the essential service helps the system manager to run the system effectively and emphasize on optimal service rates in order to have a cost benefit and less congestion in the queue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.