Abstract
This paper presents a fast and accurate fault classifier for three-terminal transmission circuits. Traditional phasor-based methods fail to meet the high speed requirements of modern power grids and necessitate alternative solutions. The transient-based schemes use advanced signal processing techniques to achieve fast and accurate fault classification. As the three-terminal lines experience very pronounced transients during faults, the proposed method makes use of the fault-generated transients to quickly and correctly classify the fault. Many transient-based schemes fail to give the required accuracy since the transient patterns with relay-measured signals are highly influenced by fault conditions. Therefore, a thorough analysis of transient patterns is carried out in this paper, and based on the typical patterns revealed by the analysis of fault-generated transients an effective classification algorithm is developed. For high-speed classification, only a quarter-cycle of postfault voltage signals measured at the relay points will be processed for feature extraction using wavelet transform. The algorithm includes a hybrid procedure based on a probabilistic neural network for tackling the effects of fault inception angle and fault resistance in transient variations. Particularly, it is designed to overcome the problem with double-line-to-ground fault classification. The technique is simple and extensive simulation studies and comparison substantiate the efficacy of the proposed method under different fault conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have