Abstract

We study transience and recurrence of simple random walks on percolation clusters in the hierarchical group of order N, which is an ultrametric space. The connection probability on the hierarchical group for two points separated by distance k is of the form \(c_k/N^{k(1+\delta )}, \delta >0\), with \(c_k=C_0+C_1\log k+C_2k^\alpha \), non-negative constants \(C_0, C_1, C_2\), and \(\alpha >0\). Percolation occurs for \(\delta 0\) and sufficiently large \(C_2\). We show that in the case \(\delta 0,\alpha >0\) there exists a critical \(\alpha _\mathrm{c}\in (0,\infty )\) such that the walk is recurrent for \(\alpha \alpha _\mathrm{c}\). The proofs involve ultrametric random graphs, graph diameters, path lengths, and electric circuit theory. Some comparisons are made with behaviours of simple random walks on long-range percolation clusters in the one-dimensional Euclidean lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.