Abstract

In a first-passage percolation model on the square lattice $Z^2$, if the passage times are independent then the number of geodesics is either $0$ or $+\infty$. If the passage times are stationary, ergodic and have a finite moment of order $\alpha > 1/2$, then the number of geodesics is either $0$ or $+\infty$. We construct a model with stationary passage times such that $E\lbrack t(e)^\alpha\rbrack < \infty$, for every $0 < \alpha < 1/2$, and with a unique geodesic. The recurrence/transience properties of reversible random walks in a random environment with stationary conductances $( a(e);e$ is an edge of $\mathbb{Z}^2)$ are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.