Abstract

Bioglycosylation is an efficient strategy to improve the biological activity and physicochemical properties of natural compounds for therapeutic drug development. In this study, two caffeic acid phenethyl ester (CAPE) glucosides (G-CAPE and 2G-CAPE) were synthesized by transglycosylation with dextransucrase from Leuconostoc mesenteroides 0326 with CAPE as an acceptor and sucrose as a donor. The products were purified and the structures were characterized. The physicochemical properties, anti-inflammatory activity, and cytotoxicity of the two CAPE glucosides were measured. The water solubility of G-CAPE and 2G-CAPE is 35 and 90 times higher, respectively, than that of CAPE. Compared to CAPE, the monoglycoside product showed superior anti-inflammatory effects, and its inhibition rate of NO, IF-6, and TNF-α is 93.4%, 76.81%, and 56.58% in RAW 264.7 macrophages, respectively, at 20 μM. Also, the cytotoxicity of both products was significantly improved. These glycosylation-modified CAPEs circumvent some of the flaws in CAPE application in anti-inflammatory drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call