Abstract

The occurrence of glutamyl polyamines (PAs) and changes in activity and levels of transglutaminase (TGase, EC 2.3.2.13), the enzyme responsible for their synthesis, are reported during the progression of the hypersensitive reaction (HR) of resistant NN tobacco plants (Nicotiana tabacum L. cv. Samsun) to tobacco mosaic virus (TMV). Mature leaves of tobacco were collected over 0-72 h after inoculation with TMV or phosphate buffer (mock). In vivo synthesis of polyamine glutamyl derivatives (glutamyl PAs), catalyzed by TGase activity, was evaluated after supplying labeled putrescine (Pu, a physiological substrate of TGase) to leaves. Results show that, starting from 24 h, mono-(gamma-glutamyl)-Pu and bis-(gamma-glutamyl)-Sd were recovered in TMV-inoculated samples but not in mock-inoculated ones; 2 days later, in the former, the amount of glutamyl derivatives further increased. An in vitro radiometric assay showed that, in TMV-inoculated leaves, TGase activity increased from 24 h onwards relative to mock controls. An immunoblot analysis with AtPng1p polyclonal antibody detected a 72-kDa protein whose amount increased at 72 h in TMV-inoculated leaves and in the lesion-enriched areas. A biotin-labeled cadaverine incorporation assay showed that TGase activity occurred in S1 (containing soluble proteins), S2 (proteins released by both cell walls and membranes) and S3 (membrane intrinsic proteins) fractions. In S3 fraction, where changes were the most relevant, TGase activity was enhanced in both mock-inoculated and TMV-inoculated samples, but the stimulation persisted only in the latter case. These data are discussed in the light of a possible role of TGase activity and glutamyl PAs in the defense against a viral plant pathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.